
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Dynamic Programming Approach for Optimizing
Indonesia’s Free School Lunch Program

Alvin Christopher Santausa - 13523033
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: alvinchrisantausa@gmail.com , 13523033@std.stei.itb.ac.id

Abstract—Indonesia’s nationwide Free School Lunch

Program, known as Makan Bergizi Gratis (MBG), is designed to
reduce child malnutrition, improve academic performance, and
help students—especially those from underprivileged
backgrounds—stay focused and ready to learn. However, running
such a large-scale program comes with major logistical and
financial challenges, particularly in distributing meals efficiently
while still meeting nutritional standards. In this paper, we explore
how Dynamic Programming (DP) can be used to optimize the
allocation of food packages to schools within budget and nutrition
constraints. We model the problem as a constrained optimization
task and solve it using a DP-based approach. Through a simulated
case study and Python implementation, we show that this method
can significantly improve cost efficiency compared to more naive
or heuristic strategies. The results demonstrate how algorithmic
techniques like DP can support smarter, data-driven decisions in
large public service programs.

Keywords—dynamic programming free meal optimization,
public policy, nutritional allocation, algorithmic planning,
constrained budget

I. INTRODUCTION
Indonesia's neweset elected president in 2024, Prabowo

Subianto, introduced an ambitious program called Makan
Bergizi Gratis (MBG) or Free School Lunch. It is a nationwide
initiative to provide free nutritious meals to schoolchildren and
pregnant women. The program aims to tackle several critical
issues at once: reducing child malnutrition, boosting school
attendance, and improving overall student health and readiness
to learn. It is one of the largest social welfare plans in the
country’s history, with a budget of over Rp 171 trillion and the
goal of reaching more than 80 million recipients.

Implementing a program of this scale brings major planning
challenges. The government and meal providers must prepare
meals that not only meet daily nutritional standards, but also stay
within strict cost limits. Each school may serve students with
different needs, and the availability and cost of food items vary
between regions. Choosing the right combination of food
options so that the total cost does not exceed the available budget
while still maximizing or fulfilling nutritional requirements
becomes a complex decision-making problem.

In large-scale public programs like this, optimization
methods can play a key role. Among the various algorithmic
techniques available, Dynamic Programming (DP) is

particularly well-suited for problems that involve resource
allocation under constraints. DP allows us to make a series of
choices, each dependent on the previous, while still guaranteeing
an overall optimal solution, especially when problems have
overlapping subproblems and exhibit what's called “optimal
substructure.”

In this paper, dynamic programming is used to optimize the
MBG program by modeling it as a multiple-choice knapsack
problem. Each school in each region has different nutritional
needs, and each meal/lunch's item comes with a specific cost and
nutritional value. Our goal is to determine the most cost-
effective way to assign meal/lunch's items to schools while still
satisfying both nutrition and budget requirements.

2 cases will be presented and analyzed with 2 different
approach, manual calculation and Python-based simulation to
show how this model works in practice. The results demonstrate
not only the effectiveness of DP in this context, but also its
potential to guide smarter, more scalable public policy planning
across diverse regions in Indonesia.

II. THEORETICAL FOUNDATION

A. Free School Lunch (Makan Bergizi Gratis) Program

Figure 1 Free School Lunch or Makan Bergizi Gratis (MBG)

Source: https://www.rri.co.id/makan-bergizi-
gratis/1241613/program-makan-siang-gratis-resmi-dimulai

mailto:author@gmail.com
mailto:author@std.stei.itb.ac.id
https://www.rri.co.id/makan-bergizi-gratis/1241613/program-makan-siang-gratis-resmi-dimulai
https://www.rri.co.id/makan-bergizi-gratis/1241613/program-makan-siang-gratis-resmi-dimulai

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Indonesia’s Makan Bergizi Gratis (MBG) program is a
flagship nutritional intervention initiated to significantly reduce
child malnutrition and support vulnerable groups like students,
toddlers, and pregnant women. The initiative is led by the
newly‑formed Badan Gizi Nasional (BGN), a non‑ministerial
government body established via Presidential Regulation No.
83/2024 to coordinate national nutritional efforts [1].

The MBG program began official rollout in early 2025, with
pilots conducted across 26 provinces, targeting over 82 million
people, including school children from preschool to senior high
and expecting or nursing mothers. The meals provided are
intended to contribute approximately one‑third of daily caloric
needs and include rice, protein, vegetables, fruit, and milk
(where local dairy is available). A standardized cost ceiling of
around Rp 10,000 per meal has been adopted to balance budget
with nutrition outcomes [2].

BGN emphasizes collaboration with various stakeholders,
including 1,000+ cooperatives and local producers to source
local ingredients, thereby supporting food sovereignty and
sustainability. Food safety and nutritional standards are strictly
enforced; meals must comply with national guidelines, hygiene
protocols, and undergo regular inspections backed by digital
monitoring systems.

The program represents not only a public health effort but
also a strategic move to strengthen local agricultural markets. By
integrating regional produce into school meals, MBG supports
economic development and resilience in local food systems.
Overall, MBG reflects a coordinated approach to holistic
nutrition policy to balancing health, education, and economic
objectives through structured meal provision.

B. Dynamic Programming
Dynamic Programming (DP) is a problem-solving strategy

used to tackle optimization problems by breaking them into
smaller, overlapping subproblems and solving each just once.
This technique is particularly useful when a problem has many
similar sub-instances, allowing solutions to be stored and reused
rather than recomputed repeatedly [4].

Despite its name, the word “programming” in DP doesn’t
relate to software or coding. It originates from an older
mathematical context, referring to “planning” or “scheduling” a
sequence of decisions over time. The term “dynamic” reflects
how the method works stage-by-stage, often storing
intermediate solutions in tables or matrices to build toward a
final answer [4].

At the heart of dynamic programming lies the principle of
optimality—the idea that the optimal solution to a problem is
built from optimal solutions to its subproblems [3]. This
principle allows us to construct complex solutions by solving
and combining simpler ones that come before them.

To apply DP successfully, a problem must meet two main
conditions:

• Overlapping subproblems: the problem can be broken
into subproblems that recur multiple times.

• Optimal substructure: the solution to the overall problem
contains solutions to smaller parts that are also optimal.

DP can be implemented in two common ways:

• Bottom-up (iterative): solving all smaller subproblems
first, often filling up a table from the base case

• Top-down (recursive with memoization): solving the
problem recursively, but caching solutions to avoid
recomputation

Many classic algorithm problems are best solved with DP,
including:

• Fibonacci numbers – using recursion with memoization

• 0/1 Knapsack – selecting the best combination of items
under a weight constraint

• Matrix Chain Multiplication – minimizing computation
cost

• Shortest path problems – like Floyd-Warshall and
Bellman-Ford algorithms

• Longest Common Subsequence (LCS) – for string
matching

• Capital Budgeting (Penganggaran Modal) – allocating
funds across multiple departments to maximize returns

C. Multiple Choice Knapsack Problem

Figure 2 Multiple-Choice Knapsack Problem

Source: https://www.researchgate.net/figure/Formulated-the-
optimization-problem-into-multiple-choice-knapsack-

problem_fig2_332055588

The Multiple-Choice Knapsack Problem (MCKP) is a
generalization of the classical knapsack problem in which the
available items are divided into mutually exclusive classes or
groups, and the selection process requires choosing at most one
item from each group [5]. This structure fits naturally into real-
world decision-making situations where selections must be
made within organized categories. These include selecting
products from different types, assigning tasks across different
departments, or planning meals by choosing ingredients from
distinct nutritional groups such as carbohydrates, proteins, fats,
and vegetables.

https://www.researchgate.net/figure/Formulated-the-optimization-problem-into-multiple-choice-knapsack-problem_fig2_332055588
https://www.researchgate.net/figure/Formulated-the-optimization-problem-into-multiple-choice-knapsack-problem_fig2_332055588
https://www.researchgate.net/figure/Formulated-the-optimization-problem-into-multiple-choice-knapsack-problem_fig2_332055588

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

In formal terms, suppose there are 𝐺 groups, each containing
a finite number of items. Let 	𝒢! be the set of items in group ggg,
where each item j	 ∈ 𝒢! has a value 𝑣!,# and a cost 𝑤!,#.The
objective is to choose at most one item from each group so that
the total cost does not exceed a given budget and the total value
is as large as possible. The decision variable is binary and
defined as follows:

𝑥!,# = *1, 𝑖𝑓	𝑖𝑡𝑒𝑚	𝑗	𝑓𝑟𝑜𝑚	𝑔𝑟𝑜𝑢𝑝	𝑗	𝑖𝑠	𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The mathematical model of the MCKP is given by:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	AA𝑣!,# 	. 𝑥!,# 	
$∈𝒢!

'

!()

𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	AA𝑣!,# 	. 𝑥!,# 	≤ 	𝑊
$∈𝒢!

'

!()

A 𝑥!,# 	
$	∈𝒢!

≤ 1, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑔 ∈ {1,… , G}

𝑥!,# ∈ {1,0}, for	all	𝑔, 𝑗

The constraint ∑ 𝑥!,# 	$	∈𝒢! ≤ 1, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑔 ∈ {1,… , G}
ensures that at most one item is selected from each group [6].

To solve this problem efficiently, dynamic programming can
be applied. Let 𝑑𝑝[𝑔][𝑏] represent the maximum total value
obtainable using the first ggg groups with total cost not
exceeding bbb. The recurrence relation for updating the dynamic
programming table is:

𝑑𝑝[𝑔][𝑏] = 𝑚𝑎𝑥	 ,𝑑𝑝[𝑔 − 1][𝑏], max
!∈𝒢!,%!,#&'

3𝑑𝑝[𝑔 − 1][𝑏 − 𝑤(,)] + 𝑣(,)78

This relation considers either skipping the current group or
selecting one item from the group, depending on which choice
yields the higher total value. The initial condition is set as
𝑑𝑝[0][𝑏]= 0 for all values of b, indicating that no value can be
obtained when no groups have been selected.

Although the MCKP is classified as NP-hard, its structured
nature allows for exact solutions using dynamic programming
for moderate-sized instances, as well as efficient approximations
in larger-scale problems [6].

In the context of Indonesia’s Free School Lunch Program,
the MCKP is a suitable model for constructing meals that satisfy
nutritional constraints while minimizing cost. Each food
category, such as protein, fat, carbohydrate, or vegetable,
corresponds to a group. Each group offers multiple ingredient
options, and the planner selects one from each group in order to
build a balanced and cost-efficient meal. The one-item-per-
group rule aligns with standard meal composition guidelines,
making MCKP a practical framework for structured meal
planning.

III. IMPLEMENTATION
This paper presents two cases of computing optimal meal

components for the Free School Lunch program. The first case
is solved through manual dynamic programming calculation,

while the second case is approached both manually and
programmatically using Python.

A. First Case
The first case of the free school lunch (MBG) program is

manually computed using dynamic programming. Suppose that
in a certain region, each student meal must include one item
from each of the following three categories: carbohydrate,
protein, and vegetable. Each category provides two available
ingredient options, as shown in the tables below.

• Carbohydrates

Item Name Calories (c) Cost (Rp) Weight (w)
Rice 250 2000 2
Noodles 300 3000 3
• Proteins

Item Name Calories (c) Cost (Rp) Weight (w)
Tempeh 150 3000 3
Egg 250 4000 4
• Vegetables

Item Name Calories (c) Cost (Rp) Weight (w)
Broccoli 100 1000 1
Spinach 120 1000 1

Since one item from each group must be selected to construct
a complete meal, the optimization must ensure that exactly one
item from each category is chosen, while not exceeding a total
cost of Rp 7,000.00. To simplify the computation, the cost is
scaled such that 1 unit = Rp 1,000, resulting in a total budget
constraint of 𝑤+,+-. ≤ 7.

To maximize the total calorie intake within the budget, a
modified dynamic programming approach is used. Unlike the
standard Multiple-Choice Knapsack Problem (MCKP)
formulation, which allows the algorithm to skip selecting an
item from a group if it is not beneficial, this case requires
selecting exactly one item per group. Skipping a group would
result in an incomplete meal, which violates the meal
composition rule in a real meal planning situation.

With the known information, the initialization is

𝑓/(𝑦) = 0	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑦

This indicates that, before any items are selected, the calorie
total is zero regardless of the available budget. From this point,
the computation proceeds stage by stage, beginning with the
carbohydrate group. The first stage computation is for the
carbohydrate options. Formula below is used to calculate 𝑓)(y)
for each y.

𝑓)(y) = max	(𝑓/(y), 𝑐0123 + 𝑓/(y − 2), 𝑐4,,5.36 + 𝑓/(y − 3))

y
(budget) 𝑓*(𝑦)

𝑐+,-. +
𝑓*(y − 2)

𝑐/0012.3+
𝑓*(y − 3)

𝑓4(y) Chosen

0 0 - - 0 -
1 0 - - 0 -
2 0 250 - 250 Rice
3 0 250 300 300 Noodles
4 0 250 300 300 Noodles
5 0 250 300 300 Noodles

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

6 0 250 300 300 Noodles
7 0 250 300 300 Noodles

Then the second stage computation is for the protein options.
Formula below is used to calculate 𝑓7(y) for each y.

𝑓7(y) = 	 max
$∈89:;<=>,?"@A

\𝑓)(y − 𝑤#) + 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠#]

y
(budget) 𝑓4(𝑦)

𝑐5.67.8 +
𝑓4(y − 3)

𝑐.((+
𝑓4(y − 4)

𝑓9(y) Chosen

0 0 - - - -
1 0 - - - -
2 250 - - - -
3 300 - - - -
4 300 - - - -

5 300 400 - 400 Rice +
Tempeh

6 300 450 500 500 Rice +
Egg

7 300 450 550 550 Noodles
+ Egg

Then the third/last stage computation is for the vegetable
options. Formula below is used to calculate 𝑓B(y) for each y.

𝑓B(y) = 	 max
$∈C<D<;EFG<,?"@A

\𝑓7(y − 𝑤#) + 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠#]

y
(budget) 𝑓9(𝑦)

𝑐'+0--02, +
𝑓4(y − 1)

𝑐37,/:-8+
𝑓4(y − 1)

𝑓;(y) Chosen

0 - - - - -
1 - - - - -
2 - - - - -
3 - - - - -
4 - - - - -
5 400 - - - -

6 500 600 620 620
Rice +
Egg +

Spinach

7 550 650 620 650
Noodles
+ Egg +
Spinach

From the manual dynamic programming calculation, the
result shows that with a total budget of 7 units (or Rp 7,000), the
best meal combination is Noodles, Egg, and Spinach, which
gives the highest total calories of 650.

B. Second Case
In the second case, the free school lunch (MBG) program is

solved using a Python implementation of dynamic programming
with an extended objective. The optimization now considers not
only calories, but also protein and fat as key nutritional
components. Each food item is assigned a nutrition score,
calculated as a weighted sum of its calories, protein, and fat
content. This allows the different nutrient contributions to be
unified into a single index variable that can be optimized using
dynamic programming.

In this scenario, each student meal must include one item
from each of the four food categories: carbohydrate, protein,
vegetable, and side dish. Each category offers three item options,
described in table below:

• Carbohydrates
Item
Name Calories (c) Protein

(p)
Fat
(f)

Score
(s)

Cost
(Rp)

Weight
(w)

Rice 250 4 1 258.5 2000 2
Noodles 300 5 4 312 3000 3
Bread 270 6 2 283 3000 4
• Proteins

Item
Name

Calories
(c)

Protein
(p)

Fat
(f)

Score
(s)

Cost
(Rp)

Weight
(w)

Tempeh 150 10 3 171.5 3000 3
Egg 250 6 5 264.5 4000 4
Chicken 220 12 6 247 5000 5
• Vegetables

Item
Name

Calories
(c)

Protein
(p)

Fat
(f)

Score
(s)

Cost
(Rp)

Weight
(w)

Broccoli 120 3 0 126 1000 1
Carrot 90 1 0 92 1000 1
Spinach 100 4 1 108.5 2000 2
• Sides

Item
Name

Calories
(c)

Protein
(p)

Fat
(f)

Score
(s)

Cost
(Rp)

Weight
(w)

Tofu 100 8 5 118 2000 2
Milk 130 6 5 144.5 2000 2
Sausage 180 6 8 196 3000 3

Each food item contains calorie (cal), protein (prot), fat (fat),
and cost (cost) values. Costs are represented in scaled units
where 1 unit = Rp 1,000, so the total meal budget must not
exceed 10 units, or Rp 10,000. The objective is to select one item
from each group such that the total cost does not exceed this
limit, and the combined nutrition score is maximized. The
nutrition score is computed using a weighted sum to simulates
more realistic meal planning, for example:

𝑆𝑐𝑜𝑟𝑒 = 	1.0 ∙ Calories + 2.0 ∙ Protein + 0.5 ∙ Fat	
The algorithm uses a bottom-up dynamic programming

strategy to build valid combinations group by group. At each
step, only configurations that include exactly one item from each
previous group are considered. The state is updated by
combining prior valid configurations with each new item option,
filtering out any combination that exceeds the cost limit.

The final result is a selection of one item per group that offers
the maximum possible nutritional value under the given budget.
This approach simulates real-world school meal planning where
affordability and nutrition must be jointly optimized, providing
a scalable method for more comprehensive policy-based food
allocation. Formula below is used to calculate 𝑓)(y) for each y.

𝑓)(y) = max	(𝑓/(y), 𝑠0123 + 𝑓/(y − 2), 𝑠4,,5.36 + 𝑓/(y − 3))

y
(budget) 𝑓*(𝑦)

𝑠+,-. +
𝑓*(y −
2)

𝑐/0012.3+
𝑓*(y − 4)

𝑐'+.:1+
𝑓*(y −
3)

𝑓4(y) Chosen

0 0 - - - 0 -
1 0 - - - 0 -
2 0 258.5 - - 258.5 Rice
3 0 258.5 312 - 312 Noodles
4 0 258.5 312 283 312 Noodles
5 0 258.5 312 283 312 Noodles
6 0 258.5 312 283 312 Noodles
7 0 258.5 312 283 312 Noodles
8 0 258.5 312 283 312 Noodles
9 0 258.5 312 283 312 Noodles

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

10 0 258.5 312 283 312 Noodles

Then the second stage computation is for the protein options.
Formula below is used to calculate 𝑓7(y) for each y.

𝑓7(y) = 	 max
$∈89:;<=>H,?"@A

\𝑓)(y − 𝑤#) + 𝑠𝑐𝑜𝑟𝑒#]

y
(budget) 𝑓4(𝑦)

𝑠5.67.8 +
𝑓4(y −
3)

𝑠.((+
𝑓4(y −
4)

𝑠-8,-<./+
𝑓4(y −
5)

𝑓9(y) Chosen

0 0 - - - - -
1 0 - - - - -
2 258.5 - - - - -
3 312 - - - - -
4 312 - - - - -

5 312 430 - - 430 Rice +
Tempeh

6 312 483.5 523 - 523 Rice +
Egg

7 312 483.5 576.5 505.5 576.5 Noodles
+ Egg

8 312 483.5 576.5 559 576.5 Noodles
+ Egg

9 312 483.5 576.5 559 576.5 Noodles
+ Egg

10 312 483.5 576.5 559 576.5 Noodles
+ Egg

Then the third/last stage computation is for the vegetables
options. Formula below is used to calculate 𝑓B(y) for each y.

𝑓B(y) = 	 max
$∈C<D<;EFG<H,?"@A

\𝑓7(y − 𝑤#) + 𝑠𝑐𝑜𝑟𝑒#]

y
(budget) 𝑓9(𝑦)

𝑠'+0--02,
+

𝑓4(y −
1)

𝑠-:++05+
𝑓4(y −
1)

𝑠37,/:-8+
𝑓4(y −
2)

𝑓;(y) Chosen

0 - - - - - -
1 - - - - - -
2 - - - - - -
3 - - - - - -
4 - - - - - -
5 430 - - - - -

6 523 556 522 - 556
Rice +

Tempeh +
Broccoli

7 576.5 649 615 538.5 649
Rice +
Egg +

Broccoli

8 576.5 702.5 668.5 631.5 702.5
Noodles +

Egg +
Broccoli

9 576.5 702.5 668.5 685 702.5
Noodles+

Egg +
Broccoli

10 576.5 702.5 668.5 685 702.5
Noodles +

Egg +
Broccoli

Then the fourth/last stage computation is for the sides
options. Formula below is used to calculate 𝑓I(y) for each y.

𝑓I(y) = 	 max
$∈J=K<H,?"@A

\𝑓7(y − 𝑤#) + 𝑠𝑐𝑜𝑟𝑒#]

y
(budget) 𝑓9(𝑦)

𝑠50=> +
𝑓4(y −
2)

𝑠6,2<+
𝑓4(y −
2)

𝑠3:>3:(.+
𝑓4(y −
3)

𝑓;(y) Chosen

0 - - - - - -

1 - - - - - -
2 - - - - - -
3 - - - - - -
4 - - - - - -
5 - - - - - -
6 556 - - - - -
7 649 - - - - -

8 702.5 674.5 700.5

-

700.5

Rice +
Tempeh

+
Broccoli
+ Milk

9 702.5 767.5 793.5
752

793.5
Rice +
Egg +

Broccoli
+ Milk

10 702.5 821 847

845

847

Noodles
+ Egg +
Broccoli
+ Milk

From the manual dynamic programming calculation, the
result shows that with a total budget of 7 units (or Rp 7,000), the
best meal combination is Noodles, Egg, and Spinach, which
gives the highest total calories of 650.

Now, the same case will be computed using python program.
First, we format the options data using dictionary-based Python
data like in the picture below.

Figure 3 2nd case data

Source: https://github.com/Incheon21/StimaMakalah

Then the code to compute each option's score is

def compute_score(item, alpha=1.0, beta=2.0,
gamma=0.5):
 return (alpha * item["cal"]) + (beta *
item["prot"]) + (gamma * item["fat"])

https://github.com/Incheon21/StimaMakalah

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The dynamic programming code to compute the best meal
components is

This code performs the same process as the manual dynamic
programming computation, but in a more structured and
efficient way. It makes sure that exactly one item is chosen from
each food category, which includes carbohydrates, protein
sources, vegetables, and side dishes, while keeping the total cost
within the given budget. At every step, the algorithm checks all
possible combinations and keeps track of the highest nutrition
score that can be achieved so far. It adds one group at a time and
only keeps the combinations that give the best results. This
method not only ensures that the meal is complete but also helps
to choose the most nutritious combination based on calories,
protein, and fat. In the end, it turns the manual calculation into a
more flexible and practical solution that can work well even for
more complex or larger sets of food options.

Then we use the computation code in the main code.

Then the result of the computation done by the python
program is

After running the dynamic programming implementation

with the provided dataset and a budget constraint of Rp 10,000,
the program successfully selected one item from each category
that maximizes the total nutrition score. The selected
combination includes Bread from the carbohydrate group,
Tempeh from the protein group, Carrot from the vegetable
group, and Milk from the side dish group. This selection results
in a total of 690 calories, 23 grams of protein, and 10 grams of
fat, all while exactly meeting the budget constraint. The
combined nutrition score, based on the weighted scoring
formula, reaches 741.0, indicating a highly efficient allocation
of nutritional value within cost limitations. This result
demonstrates how dynamic programming can be effectively
applied to solve real-world meal planning problems where
multiple objectives and constraints must be balanced.

IV. DISCUSSION
The results from both cases show how dynamic

programming can be used to support practical decision-making
in planning free school lunches. In the first case, the model
focused only on maximizing calorie intake using manual
calculations. While this approach is simple and useful for small-
scale problems, it does not account for other essential nutrients.
The second case introduced a more complete model by using
Python to evaluate multiple nutrients like calories, protein, and
fat that is combined into a single score. This allowed the
algorithm to choose not just the most energy-rich foods, but also
those that support growth and overall health, while still
respecting the given budget. The final selection demonstrated
that it is possible to create a well-balanced meal using a
structured algorithm that mirrors real meal composition.

Although the result is promising, the current approach still
has limitations. The model assumes fixed prices and availability,
which may not reflect real-life conditions where food prices
fluctuate and supply can vary by region. It also treats nutritional
values equally across all students, without accounting for
individual needs such as allergies, age differences, or dietary
restrictions. In the future, the model could be improved by
adding more nutrients, setting minimum and maximum
thresholds, or integrating local food price databases. Despite its
simplicity, this system shows that algorithmic methods like
dynamic programming can help schools or regional authorities
plan meals that are cost-effective, nutritionally sound, and
scalable. With further development, this approach has the
potential to support better policy execution and reduce the
complexity of meal planning in nationwide programs like MBG.

def optimize_meal(categories, max_budget):
 dp = {0: (0, [])}

 for group in categories:
 new_dp = {}
 for b in dp:
 score_so_far, items_so_far =
dp[b]
 for item in group:
 cost = item["cost"]
 score = compute_score(item)
 new_budget = b + cost
 if new_budget <= max_budget:
 new_score = score_so_far
+ score
 if new_budget not in
new_dp or new_dp[new_budget][0] < new_score:
 new_dp[new_budget] =
(new_score, items_so_far + [item])
 dp = new_dp

 best = max(dp.values(), key=lambda x:
x[0])
 return best

max_budget = 10 # Rp 10,000
score, selected_items =
optimize_meal(categories, max_budget)

print("Selected Items:")
for item in selected_items:
 print(f" - {item['name']} | Cal:
{item['cal']} | Prot: {item['prot']} | Fat:
{item['fat']} | Cost: Rp {item['cost']}000")
print("total cost: Rp", sum(item['cost'] for
item in selected_items), "000")

Calculate and print total carbs, protein,
and fat
total_cal = sum(item['cal'] for item in
selected_items)
total_prot = sum(item['prot'] for item in
selected_items)
total_fat = sum(item['fat'] for item in
selected_items)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

V. CONCLUSION
The research has shown how dynamic programming can be

used as an effective method for solving the meal selection
problem in Indonesia’s Free School Lunch (MBG) program. By
modeling the meal planning task as a multiple-choice
optimization problem, we were able to select the best
combination of food items/components that met both nutritional
goals and budget limits. In the first case, a simple manual
approach focused on maximizing calories was demonstrated to
illustrate the basic logic of the algorithm. In the second case, a
more advanced implementation was developed using Python to
consider multiple nutrients like calories, protein, and fat that is
unified under a single scoring system.

The results confirmed that this approach can generate
complete and nutritionally balanced meals while keeping within
cost constraints. This method not only simplifies decision-
making for meal providers but also creates opportunities for
smarter, data-driven public policy. Although further
improvements are needed to adapt the model to real-world
challenges such as price fluctuations, dietary restrictions, and
regional variations, dynamic programming has proven to be a
promising foundation for building scalable and efficient meal
planning tools in support of national food programs.

APENDIX
Youtube video link: https://youtu.be/CZlGPP_C2YM

Source Code: https://github.com/Incheon21/StimaMakalah

ACKNOWLEDGMENT
The author expresses heartfelt gratitude to Almighty God for

the blessings and guidance during the writing of this paper.
Special thanks are extended to Dr. Nur Ulfa Maulidev for the
role as lecturer in the IF2211 Algorithm Strategy course and to
Dr. Ir. Rinaldi Munir, M.T., for making the lecture materials
available on the course website, which supported the research
process. The author also wishes to acknowledge the unwavering

support from family and friends that were invaluable in
completing this paper.

REFERENCES
[1] Badan Gizi Nasional. Layanan Unggulan untuk Masa Depan Sehat

Indonesia. (n.d.). https://www.bgn.go.id/
[2] Pangan, K. (2025, April 18). Local food and the free nutritious meal

program. Koalisi Rakyat Untuk Kedaulatan Pangan.
https://kedaulatanpangan.org/local-food-and-the-free-nutritious-meal-
program/

[3] Munir, Rinaldi. 2024. Program Dinamis (Dynamic Programming) Bagian
1. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-
Program-Dinamis-(2025)-Bagian1.pdf

[4] BasuMallick, Chiradeep. 2022. What is Dynamic Programming?
Working, Algorithms, and Example.
https://www.spiceworks.com/tech/devops/articles/what-is-dynamic-
programming/

[5] Kellerer, H., Pferschy, U., Pisinger, D. (2004). The Multiple-Choice
Knapsack Problem. In: Knapsack Problems. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-24777-7_11

STATEMENT OF ORIGINALITY
I hereby declare that this paper I have written is my own work,
not an adaptation or translation of someone else's paper, and not
plagiarism.

Bandung, 24th June 2025

Alvin Christopher Santausa

13523033

https://youtu.be/CZlGPP_C2YM
https://github.com/Incheon21/StimaMakalah
https://www.bgn.go.id/
https://kedaulatanpangan.org/local-food-and-the-free-nutritious-meal-program/
https://kedaulatanpangan.org/local-food-and-the-free-nutritious-meal-program/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://www.spiceworks.com/tech/devops/articles/what-is-dynamic-programming/
https://www.spiceworks.com/tech/devops/articles/what-is-dynamic-programming/
https://doi.org/10.1007/978-3-540-24777-7_11

